Let’s get small, part three

Some of the earliest philosopher/scientists taught that material objects—whether solid, liquid, or gas—are made of atoms. By “atoms,” they meant tiny pieces that could not be divided into smaller pieces Over time, philosopher/scientists convinced themselves that four kinds of atoms exist: water, earth, fire, and air.  For centuries, they conducted chemical experiments based on the assumption that all materials in the world are built from those four kinds of atoms.

Today we teach that water is not an element. Water consists of two elements—hydrogen and oxygen. The hydrogen atom is the simplest of all atoms, containing one proton as its nucleus and one electron somehow related to the nucleus. Oxygen is more complicated. Oxygen has eight protons in its nucleus, as well as eight neutrons (in the most common form of oxygen—other forms, called isotopes, also exist). Oxygen also has eight electrons. When a molecule of water forms, each of the atoms of hydrogen “shares” its electron with the oxygen atom, linking the three atoms into one molecule. And these molecules are so tiny that a huge number of them must be in the same place for them to behave with the properties our senses detect as water.

If the tiny world of molecules and atoms were that simple, scientists and philosophers would be delighted. Further experiments in modern times, though, have shown that the atoms are not unbreakable—they consist of even smaller parts. (One physicist commented on continuing discoveries of subatomic particles by saying that it seems as if God is making up new complications as quickly as researchers unravel the previous complications.) Electrons, for example, are so tiny that they cannot be measured—estimates of the size of an electron vary wildly. This difficulty comes from the apparent fact that electrons are not tiny particles, specks of something solid, but instead are packets of energy. An electrician designs devices that rely on electricity, treating the moving electrons as “currents” as if they flowed like water in a stream. But individual electrons jump around like nothing we experience in our regular lives as larger creatures.

In that difference, electrons resemble photons. Photons are also packets of energy that act like tiny particles in some ways, but they also travel as waves of energy—sometimes as visible light, sometimes as radio waves, X-rays, or other frequencies. Electrons of photons do not follow the rules of physics that were used from the time of Isaac Newton to the time of Albert Einstein. Nor do they seem to exist in the kind of geometric space that has been used since the time of Euclid. Euclid’s geometry and Newton’s physics are not wrong. They merely are unable to describe realities for very tiny things (and also for very big things). Because of our experiences with objects that are neither very tiny nor very big, we tend to think in terms of Euclid’s geometry and Newton’s physics. We imagine the entire universe existing an infinite distance in every dimension—up and down, back and forth, right and left. We imagine time also existing an infinite distance into the past and into the future. Both time and space are more flexible than we generally imagine—which is why Einstein’s theories of relativity are difficult for our minds to grasp. But for the Christian, who describes time and space as created by a God who transcends both time and space, the flexibility of those creations should not be a great surprise.

In a molecule of water, then, we have ten protons and ten electrons and eight neutrons. Beyond that, each proton and each neutron are made of three quarks. Each electron has a negative charge equal to one, and each proton has a positive charge equal to one, but quarks have fractional charges which provide the sum charge of a proton as positive one and the sum charge of a neutron as zero. Although six kinds of quarks exist, only two are commonly found in atoms—two up quarks and a down quark in each proton, and two down quarks and an up quark in each neutron. So a molecule of water consists of sixty-four very tiny mysterious pieces, each of which is as much energy as it is matter—plus some particles called gluons that hold the quarks together in their protons and neutrons.

Immanuel Kant would be pleased to know that today’s scientists describe reality at the tiny level as completely unlike what we experience in our everyday world. Kant insisted that the phenomena we observe are very different than the noumena that really exist and that cause us to observe things. Time and space are nothing like what we generally consider them to be. This comment allows us to transition to consideration of the nature of time—what time really is, and how it relates to the lives that we live. J.