The oxymoron of subatomic particles

Science, like money, is a human invention that is very useful when used properly and very dangerous when misused. Both money and science can be very useful; on the other hand, a lack of either can be very problematic. Neither science nor money has the strength and significance to be the foundation of a person’s life. A human life based only on science, like a human life based only on money, is sadly crippled and unable to handle the crises that can strike a life emotionally, intellectually, and spiritually.

One of the strengths of science is also one of its weakness: science continually changes. The more effort people put into studying the world, observing the world, experimenting with things in the world, and making predictions based on those experiments and observations, the more likely it becomes that new theories will shape science and direct scientific inquiry on paths that, until that time, were unexpected.

Science was practiced in ancient Egypt, Babylon, India, and China, developing differently in different places. Western science (which drew upon scientific observations and theories from Egypt, Babylon, and India) began roughly twenty-four centuries ago with the philosophers of ancient Greece. Among their efforts was an attempt to determine the basic building blocks of the physical, or observable, world. One early philosopher suggested that everything material is made of water—a reasonable guess, since water can assume so many forms, from ice and snow to liquid water to vapor. Others suggested different basic materials rather than water. Pythagoras and his followers proposed that everything observable consists of numbers. Greek philosophers tended to seek internally consistent explanations of the world, even when those explanations seemed contrary to observation. One group, for example, insisted that motion is logically impossible and is only an illusion—that the true universe is stable and unchanging. Until the invention of calculus many centuries later, scientists and philosophers were not equipped to refute the logic that suggested that motion cannot happen in the world.

A basic teaching of western science since Greek times has been the assumption that all physical items consist of tiny unbreakable pieces. These were named “atoms” from the Greek word for “unbreakable.” For many centuries, most western scientists considered four elements to be represented among the atoms: water, earth, air, and fire. Alchemy—the predecessor to modern chemistry—observed and experimented with physical items with the assumption that all such items consist of tiny unbreakable pieces of water, earth, air, and fire. Modern western science would never have developed without the alchemists of medieval Europe. Far from living in “the dark ages,” the medieval alchemists were at the forefront of science, culture, and civilization.

Chemists eventually demonstrated the existence of far more than four elements—for example, that water is not a basic building block, but water can be divided into hydrogen and oxygen. As they continued to experiment and observe, chemists developed a series of mathematical relationships among the elements, re-suggesting the possibility that number is the most fundamental building block of the universe. Modern physics grew out of modern chemistry; roughly one hundred years ago, western scientists began to find particles that seemed to be building blocks even of atoms.

Understand that subatomic particles are an oxymoron. Atoms are supposed to be unbreakable—the word “atom” was created to communicate that important idea. Finding that atoms contained protons, neutrons, and electrons changed the rules of science; evidence of quarks and other subatomic particles continued the process of demonstrating that atoms, though important, are among the worst-named ideas in all of science.

Huge powerful machines have been built to study the tiny pieces of atoms. Smashing atoms to observe their particles has been compared to smashing an old-fashioned watch to try to guess how it functions. One scientist, Leon Lederer, joked that God “seems to be making it up as we go along,” since every layer of discoveries suggests a new layer of tiny pieces even smaller than those already demonstrated.

Scientists continue to study the world, to try to understand how things work. They observe and experiment, not only with subatomic particles, but with viruses and other disease-causing agents, medicines, genetics, and the climate of the planet. Sometimes most scientists agree with each other about how things work; other times their research seems to contradict the research of their peers. We are all familiar with the constant revision of nutritional studies—first eggs are good for us, then they are bad for us, then they are good for us again. The old tradition of individual scientists plugging away in their laboratories to manage great discoveries has long been supplanted by teams of scientists funded by government grants and by corporate investments. Political agendas and the hope to generate a financial profit inevitably shape the work of today’s scientists. Their work is important and should not be curtailed; but every scientific discovery must also be accepted with the proverbial grain of salt. That salt is as important an ingredient as any other contribution to scientific investigation. J.

A little bit of science on the occasion of a college graduation

This weekend I was out of town to attend a graduation. The night before the ceremony the family was gathered, visiting, and the graduate shared a recent event from her physics class. The professor described a scenario, asked the members of the class to make a prediction of the outcome, told them that they were all wrong, but was unable to explain why they were wrong.

Here is a scenario: a container of water has an ice cube floating in it, and a pebble sits on the ice cube. The ice cube melts. The pebble drops to the bottom of the container. Does the water level in the container rise, fall, or remain the same?

Along with most of the other family members, I predicted that the water level would rise. I had pictures of Archimedes running through the streets shouting “Eureka!” after realizing that the volume of a solid object could be measured by dropping it into a container of water and measuring the displacement of the water. Moreover, it seems that the water level should rise because of the melting of the ice. The graduate said all the members of the class had made the same prediction and it was wrong, but she still did not understand why.

One family member, an engineer, said that the professor was correct, and he explained why. The explanation puzzled most of the family members, although I caught on after a couple times through the scenario. The engineer wanted to produce a mathematical explanation with paper and pencil, but the rest of the family assured him that would not be necessary. We did try to experiment by creating the scenario with a measuring cup, an ice cube, and a pebble, but we could not find the right size ice cube or pebble to conduct the experiment.

The next day there was a party in the same house after the graduation ceremony. In addition to family members, several fellow graduates and other college students were present. To fill a lull in the conversation, I reintroduced the scenario from the physics class. One of the college students, a mathematician, insisted that the water level would rise. The engineer again countered that it would drop. This time the two of them did resort to pencil, paper, a laptop computer, and information from the internet, including the density of water and ice. The engineer was able to convince the mathematician that the water level would indeed drop.

It happens that the classic form of this scenario involves a boat and an anchor rather than an ice cube and a pebble. When the anchor is removed from the boat and dropped into the water, the water level drops, even though it seems that it should rise. The reason for the counterintuitive answer is that the boat with the anchor in it displaces some of the water in the pond. When the anchor is removed from the boat, the boat rises and the water level falls. When the anchor is dropped into the water, some water is displaced and the water level rises, but not to the height that it had been when the anchor was in the boat. The reason this happens is that the anchor sinks because it is denser than the water. (If the anchor floated and did not sink, it would not be an anchor, said the engineer.) Because of its density, the anchor displaces less water than its weight alone displaced when it was in the boat, being supported by the water.

By the same token, ice floats because it is less dense than water. As it floats, it displaces some of the water. When it melts, the volume of the water that was previously frozen is less than the volume of water displaced by the floating ice. Therefore, the pebble-ice cube combination displaced more water when the ice was frozen and floating, supporting the pebble, than the pebble displaced after the ice melted; even the melted ice did not add enough water to raise the water level to the height it had been when the ice was still frozen.

The rest of the weekend, including the graduation, was also nice. J.